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COMMENTS

Comments are short papers which criticize or correct papers of other authors previously publishedRhysieal Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as
for regular articles is followed, and page proofs are sent to authors.

Reply to “Absorbing boundary conditions for inertial random processes”

J. Heinrichs
Institut de Physique B5, Universitie Liege, Sart Tilman, B-4000 Lgg, Belgium
(Received 23 September 1996

We show that the Fokker-Planck equation used in our study of the first-passage time distribution and of
survival probabilitiedPhys. Rev. E48, 2397 (1993] for a particle moving in the field of random correlated
noise describes a well defined first-order stochastic process, which is equivalent to the original second-order
Langevin equation. This suggests naturally the use of the familiar first-passage boundary condition for first-
order processes as done in our paper, and shows that the criticism of our boundary conditions by Masoliver
et al.[Phys. Rev. Hto be publishef] appears to be unfounded. On the other hand, the nonuniqueness of the
Fokker-Planck equation for second-order random processes demonstrated by Drory renders the study of first-
passage times for such processes by means of a Fokker-Planck approach unrgliéibi@-651X97)02302-1

PACS numbdss): 05.40:+j, 02.50—r

In our previous papelrl], we studied first-passage times ap(x,t) 9 <d
gt ox

X(t)
and survival probabilities for a particle subjected to a random = gt Ax—xV]), %)
acceleration described by the Langevin equation
. and then inserting Eq3) and performing the average over
x=1(0), (D the Gaussian driving noise E€R). This readily yields the

. . . . diffusion equation of Ref{1], namely,
wheref(t) is a random Gaussian noise with zero mean as- g 1l y

sumed to have an Ornstein-Uhlenbeck correlatigith ~the ap(x,t) p(x,t)
correlation time pr =3D(t) o (6)
f§ t—t’ i
(f(t)f(t’))z—oexp<—| |). (2 With
27 T
D(t)=fat[t—r(1—e Y7)]. 7

The analysis in Refl1] is based on the Fokker-Plangtif-
fusion) equation for the marginal distribution of the position Having demonstrated the equivalence of E@.and(7) to
p(x,t) (which was actually derived for any form of Gaussian the one-variabléor first-ordey process3) it is then natural
nois@. Here, we rederive this equation in a way that expli-to define first-passage times at boundarest¢ by the fa-
cates its relation to a first-order stochastic process. This thefiliar absorbing conditions
naturally suggests using the familiar first-passage time
boundary condition for one-variable procesggs as done in p(££0=0, ®
Ref. [1].

For a particle at rest dt=0, Eq. (1) is equivalent to the
first-order stochastic equation

which have been discussed long ago for such procgg3es
These conditions used in Rdfl] express the first-passage
distribution from those realizations in which a patrticle start-
¢ ing from a position—§&<x,<¢ att=0 has never reached the
)'(:f dt'f(t'). (3  boundaries during timé.

0 In their Comment 3], Masoliver et al. view Eq. (1) as
describing a two-dimensional or second-order random pro-

The probability density of displacementis defined by cess k,v) obeying the coupled first-order equations
p(x,t) = ([ x—x(1)]), 4) X=v, (93
wherex(t) is the solution of Eq(3) and the brackets denote v="F(1), (9b)

averaging over the noise. The Fokker-Planck equation for
p(x,t) is obtained by differentiating both sides of E@)  which are equivalent t61). The statistical properties of the
with respect to time, i.e., particle are then described by the joint distribution of posi-
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tion and velocityp(x,v,t). The first-passage time boundary tion, we discuss the situation for Gaussian white-noise forces
conditions atx==*¢, which are generally used for such a (i.e., 7=0) studied by Masoliver and co-worke[8,4]. The
two-variable process, are equation forp=p(x,v,t) obtained from Eq(9) [8] reduces
then to the ordinary Fokker-Planck equation
p(—&,v>0t)=0, p(&v<0t)=0. (10

J J 52
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As emphasized by Masoliveat al. [3], these boundary con- P ox T2

ditions for first-passage times differ from the conditiaBs
Equations(8) and (10) correspond to two different phenom- i time-independent coefficientar=2/2). On the other
enological definitions of distributions of the first-passagenang for r=0. the new Fokker-Plancklike equatids, 7]

times at boundaries:¢. In any case, in view of the general \ hich follows from the preceding alternative first-order
acceptance of the conditiori8) for first-passage time&nd equations, becomes

survival probabilitie for first-order processes, we are en-
titled to use them in connection with the Fokker-Planck ap ) 5°p #?p  I*p
equation(6) describing the first-order inertial proce®. In E=a(t )
this sense, the criticism of our analysis on the basis of the use

of improper boundary conditions by Masolivetal.[3] ap-  for a particle initially at rest at=0. Equationg11) and(12)

(11)

_+ —_
NG taxau Jv (12)

pears to be unfounded. have a common solutiof6],
These author$3] present an interesting comparison of
results for mean first-passage times obtained from our treat- V3 3 ) v2t?
ment [1] with those obtained by Masoliver and Pofr4] PXv. =513 F{_ﬁ (X _XUtJFT) ;
from the ordinary Fokker-Planck equation fofx,v,t), with (13)

the absorbing conditiondl0) [5], in the case of white noise
(7=0). This comparison reveals a good qualitative agreemendescribing the statistics of the motion in free spdce.,
between mean exit times out of a spatial interval of width without boundariesdefined by the Langevin equatidd).
as a function of the initial position of the particle within that On the other hand, the solutions of E¢$1) and (12) in a
interval. finite interval (—¢,£), with the boundary conditionél0) at
However, as shown recently by Drory, a fundamental amx==*¢, are expected to be different, as mentioned above.
biguity is plaguing first-passage time studies based on &rom this, it follows that the mean exit time obtained by
Fokker-Planck equation for the joint distributign(x,v,t) Masoliver and co-workerf3,4] from an exact solution based
and on the boundary conditiori$0). This is due to the ex- on Eg.(11) with the boundary condition€l0) is not unique
istence of two different Fokker-Planck equations that argor unambiguous since a different result is expected by
both equivalent to Eq(l) and have a common solution for starting from Eq.(12) with the same boundary conditions.
the distributionp(x,v,t) of the random procesgl) in the  We note, incidentally, that while Eq11) leads to a closed
absence of boundari¢8]. Indeed, in the presence of bound- second-order partial differential equation for the mean exit
aries described by, e.g., the boundary condititt®, one time [5,4] the corresponding differential equation obtained
expects the solutions of the two Fokker-Planck equations térom Eq. (12) relates the mean exit time to the second and
be no longer the same and thus to yield nonunique results fadhird moments of the exit time distribution.
first-passage times. Finally, we emphasize that, in contrast to the Fokker-
As shown elsewherg7], the two different Fokker-Planck Planck equation for the distributiop(x,v,t), Egs.(6) and
equations correspond to two different but equivalent ways of7) for the marginal distributiorp(x,t) are unique, being
writing Eq. (1) in terms of first-order differential equations, related to the uniquely defined first-order proceésfor dis-
namely Egs.(9), on the one hand, and the equationsplacements. Our results for first-passage times and survival
x=[tdt'f(t") andv=1(t), on the other hand. For illustra- probabilities in Ref[1] are thus unambiguous.
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