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Reply to ‘‘Absorbing boundary conditions for inertial random processes’’

J. Heinrichs
Institut de Physique B5, Universite´ de Liège, Sart Tilman, B-4000 Lie`ge, Belgium

~Received 23 September 1996!

We show that the Fokker-Planck equation used in our study of the first-passage time distribution and of
survival probabilities@Phys. Rev. E48, 2397~1993!# for a particle moving in the field of random correlated
noise describes a well defined first-order stochastic process, which is equivalent to the original second-order
Langevin equation. This suggests naturally the use of the familiar first-passage boundary condition for first-
order processes as done in our paper, and shows that the criticism of our boundary conditions by Masoliver
et al. @Phys. Rev. E~to be published!# appears to be unfounded. On the other hand, the nonuniqueness of the
Fokker-Planck equation for second-order random processes demonstrated by Drory renders the study of first-
passage times for such processes by means of a Fokker-Planck approach unreliable.@S1063-651X~97!02302-7#

PACS number~s!: 05.40.1j, 02.50.2r
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In our previous paper@1#, we studied first-passage time
and survival probabilities for a particle subjected to a rand
acceleration described by the Langevin equation

ẍ5 f ~ t !, ~1!

where f (t) is a random Gaussian noise with zero mean
sumed to have an Ornstein-Uhlenbeck correlation~with t the
correlation time!

^ f ~ t ! f ~ t8!&5
f 0
2

2t
expS 2

ut2t8u
t D . ~2!

The analysis in Ref.@1# is based on the Fokker-Planck~dif-
fusion! equation for the marginal distribution of the positio
p(x,t) ~which was actually derived for any form of Gaussi
noise!. Here, we rederive this equation in a way that exp
cates its relation to a first-order stochastic process. This
naturally suggests using the familiar first-passage t
boundary condition for one-variable processes@2#, as done in
Ref. @1#.

For a particle at rest att50, Eq. ~1! is equivalent to the
first-order stochastic equation

ẋ5E
0

t

dt8 f ~ t8!. ~3!

The probability density of displacementx is defined by

p~x,t !5^d@x2x~ t !#&, ~4!

wherex(t) is the solution of Eq.~3! and the brackets denot
averaging over the noise. The Fokker-Planck equation
p(x,t) is obtained by differentiating both sides of Eq.~4!
with respect to time, i.e.,
551063-651X/97/55~2!/2067~2!/$10.00
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]p~x,t !

]t
52

]

]x K dx~ t !dt
d@x2x~ t !#L , ~5!

and then inserting Eq.~3! and performing the average ove
the Gaussian driving noise Eq.~2!. This readily yields the
diffusion equation of Ref.@1#, namely,

]p~x,t !

]t
5 1

2D~ t !
]2p~x,t !

]x2
, ~6!

with

D~ t !5 f 0
2t@ t2t~12e2t/t!#. ~7!

Having demonstrated the equivalence of Eqs.~6! and ~7! to
the one-variable~or first-order! process~3! it is then natural
to define first-passage times at boundariesx56j by the fa-
miliar absorbing conditions

p~6j,t !50, ~8!

which have been discussed long ago for such processes@2#.
These conditions used in Ref.@1# express the first-passag
distribution from those realizations in which a particle sta
ing from a position2j,x0,j at t50 has never reached th
boundaries during timet.

In their Comment@3#, Masoliver et al. view Eq. ~1! as
describing a two-dimensional or second-order random p
cess (x,v) obeying the coupled first-order equations

ẋ5v, ~9a!

v̇5 f ~ t !, ~9b!

which are equivalent to~1!. The statistical properties of th
particle are then described by the joint distribution of po
2067 © 1997 The American Physical Society



ry
a

-

-
ge
l

n-
ck

u

of
ea

e

at

m
n

ar
r

d-

s
f

o
,
ns
-

ces

er

ve.
y
d

y
.

xit
ed
nd

er-

al

2068 55COMMENTS
tion and velocityp(x,v,t). The first-passage time bounda
conditions atx56j, which are generally used for such
two-variable process, are

p~2j,v.0,t !50, p~j,v,0,t !50. ~10!

As emphasized by Masoliveret al. @3#, these boundary con
ditions for first-passage times differ from the conditions~8!.
Equations~8! and ~10! correspond to two different phenom
enological definitions of distributions of the first-passa
times at boundaries6j. In any case, in view of the genera
acceptance of the conditions~8! for first-passage times~and
survival probabilities! for first-order processes, we are e
titled to use them in connection with the Fokker-Plan
equation~6! describing the first-order inertial process~3!. In
this sense, the criticism of our analysis on the basis of the
of improper boundary conditions by Masoliveret al. @3# ap-
pears to be unfounded.

These authors@3# present an interesting comparison
results for mean first-passage times obtained from our tr
ment @1# with those obtained by Masoliver and Porra@4#
from the ordinary Fokker-Planck equation forp(x,v,t), with
the absorbing conditions~10! @5#, in the case of white noise
~t50!. This comparison reveals a good qualitative agreem
between mean exit times out of a spatial interval of widthL
as a function of the initial position of the particle within th
interval.

However, as shown recently by Drory, a fundamental a
biguity is plaguing first-passage time studies based o
Fokker-Planck equation for the joint distributionp(x,v,t)
and on the boundary conditions~10!. This is due to the ex-
istence of two different Fokker-Planck equations that
both equivalent to Eq.~1! and have a common solution fo
the distributionp(x,v,t) of the random process~1! in the
absence of boundaries@6#. Indeed, in the presence of boun
aries described by, e.g., the boundary conditions~10!, one
expects the solutions of the two Fokker-Planck equation
be no longer the same and thus to yield nonunique results
first-passage times.

As shown elsewhere@7#, the two different Fokker-Planck
equations correspond to two different but equivalent ways
writing Eq. ~1! in terms of first-order differential equations
namely Eqs. ~9!, on the one hand, and the equatio
ẋ5* 0

t dt8 f (t8) and v̇5 f (t), on the other hand. For illustra
se
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tion, we discuss the situation for Gaussian white-noise for
~i.e., t50! studied by Masoliver and co-workers@3,4#. The
equation forp[p(x,v,t) obtained from Eq.~9! @8# reduces
then to the ordinary Fokker-Planck equation

]p

]t
52v

]p

]x
1a

]2p

]v2
, ~11!

with time-independent coefficients~a5f 0
2/2!. On the other

hand, for t50, the new Fokker-Plancklike equation@6,7#,
which follows from the preceding alternative first-ord
equations, becomes

]p

]t
5aS t2 ]2p

]x2
12t

]2p

]x]v
1

]2p

]v2D , ~12!

for a particle initially at rest atx50. Equations~11! and~12!
have a common solution@6#,

p~x,v,t !5
)

2pat3
expF2

3

at3 S x22xvt1
v2t2

3 D G ,
~13!

describing the statistics of the motion in free space~i.e.,
without boundaries! defined by the Langevin equation~1!.
On the other hand, the solutions of Eqs.~11! and ~12! in a
finite interval ~2j,j!, with the boundary conditions~10! at
x56j, are expected to be different, as mentioned abo
From this, it follows that the mean exit time obtained b
Masoliver and co-workers@3,4# from an exact solution base
on Eq.~11! with the boundary conditions~10! is not unique
~or unambiguous!, since a different result is expected b
starting from Eq.~12! with the same boundary conditions
We note, incidentally, that while Eq.~11! leads to a closed
second-order partial differential equation for the mean e
time @5,4# the corresponding differential equation obtain
from Eq. ~12! relates the mean exit time to the second a
third moments of the exit time distribution.

Finally, we emphasize that, in contrast to the Fokk
Planck equation for the distributionp(x,v,t), Eqs. ~6! and
~7! for the marginal distributionp(x,t) are unique, being
related to the uniquely defined first-order process~3! for dis-
placementsx. Our results for first-passage times and surviv
probabilities in Ref.@1# are thus unambiguous.
s,
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